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ARTICLE INFO ABSTRACT

Keywords: In the past decade, galloping-based energy harvesters (GPEH) connected with various interface
Galloping circuits have been developed and analytical models have been built. However, the power per-
Piezoelectric

formances of these advanced structures and circuits are always treated separately, and a general
model is missing to gain insights at a system level. To tackle this issue, this paper proposes a
unified analysis framework for GPEHs. Its results are consistent with validated (but disconnected)
results in the literature. The method provides an integrated view of the physics of linear GPEHs in
multiple domains at the system level, and elucidates the similarities and differences among power
behaviors of GPEHs connected with various interface circuits. The framework is based on two
major elements: an equivalent circuit that represents the entire system, and an equivalent
impedance that represents the interface circuit. Firstly, the electromechanical system is linearized
and modeled in the electrical domain by an equivalent self-excited circuit with a negative
resistive element representing the external aerodynamic excitation, and a general load impedance
representing the interface circuit. Then, a closed-form, analytical expression of the harvested
power is obtained based on the Kirchhoff’s Voltage Law, from which the optimal load, maximum
power, power limit, and critical electromechanical coupling (minimum coupling to reach the
power limit) are determined. In this unified analysis, the exact type of energy harvesting interface
circuit is not assumed. After that, the power characteristics of a GPEH connected with five
representative interface circuits are analytically derived and discussed, by using the particular
equivalent impedance of the interface circuit of interest. It is shown that they are subjected to the
same power limit. However, the critical electromechanical coupling depends on the type of cir-
cuit. Throughout the discussions, impedance plots are used to illustrate the relationship between
the internal system characteristics and external load impedance, facilitating the understanding of
system power behavior.

Energy harvesting
Equivalent circuit
Impedance
Electromechanical coupling

1. Introduction

In the past few decades, low-power-consumption microelectronics, such as wireless sensors, wearable electronics and internet of
things have been rapidly developed. To supply reliable energy to these low-power-consumption micro devices, energy harvesting
technology has been increasingly advanced by many researchers to harness the green energy, such as solar, heat, vibration, and wind in
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our environment [1]. In the area of small-scale wind energy harvesting, aeroelastic energy harvesting has become one of the most
promising technologies [2]. Recently, several flow-induced-vibration mechanisms [3-10], such as vortex-induced vibration [3-5],
flutter [6,7], galloping [8,9], and wake galloping [10,11], have been introduced into aeroelastic energy harvesting. Among these
mechanisms, the galloping-based energy harvester has high energy harvesting efficiency as a result of the large structural response
during the induced limit cycle oscillation when galloping takes place, leading to a large output power [8,9].

To improve the performance of galloping energy harvesting, researchers have devoted most of the efforts to two important aspects
in the past few decades [2,12]: structural design [13-33], and energy harvesting interface circuit design [34-39]. In the structural
design aspect, the bluff body and piezoelectric beams are the main design focuses. The feasibility of galloping energy harvesting was
theoretically demonstrated by Barrero-Gil et al. [8] and experimentally validated by Sirohi et al. [13,14]. In Sirohi’s experiment, a
bluff body was designed as D-shaped cross section, and results showed that the power output increased rapidly with the increase of the
wind speed when galloping occurred. To improve the output power, the geometry of the bluff body was then designed as a square
section [15], a triangle section [16], etc. Yang et al. [17] studied the influence of the cross-section geometry on the performance of a
galloping piezoelectric energy harvester. They found that the performance of square cross-section geometry was better than that of the
triangles, D-section and rectangle geometries. Recently, Wang et al. investigated a GPEH with isosceles triangular cross-section bluff
bodies with different vortex angles [ 18] and proposed a butterfly-shaped bluff body to improve the efficiency of low-speed wind energy
harvesting [19]. Sun et al. [20] proposed a nested bluff-body structure and experimental results indicated a significant power density
increase of 27.8%. Sun et al. [21] proposed a bulb cross-sectional cylinder to maximize the output power of coupled vortex-induced
vibration and galloping phenomenon. More recently, the concept of metasurface was introduced by Wang et al. [22] into the bluff body
design to enhance vortex induced energy harvesting and machine learning method was used by Zhang et al. [23] to predict the
response of wind energy harvesters. Meanwhile, nonlinear GPEH and multi-degree-of-freedom GPEH have received growing interests
in recent years. Bibo et al. [24,25] proposed a nonlinear galloping energy harvester by introducing the nonlinear restoring force. It was
revealed that the inter-well oscillation of the bistable configuration outperformed the high-energy oscillation of the monostable
configuration. Such a nonlinear restoring force was also utilized in the wake of galloping energy harvesting by Alhadidi et al. [26] to
largely broaden the bandwidth. Wang et al. [27] furtherly developed a tristable GPEH. Their experimental results showed that the
maximum power reached 0.73 mW at 7.0 m/s wind speed. Zhao et al. [28] recently proposed an impact-based energy harvester, which
integrated the conventional GPEH with an elastic stopper to achieve broadband energy harvesting. Besides, Lan et al. [29] developed a
two-degree-of-freedom (2-DOF) GPEH from the conventional single-degree-of-freedom (SDOF) GPEH. It is found that the cut-in wind
speed of 2-DOF GPEH is closely related to the mass, stiffness, and damping, which makes it possible to efficiently tune the cut-in wind
speed of GPEH by tuning the mass or stiffness of mechanical structures. This analytical prediction was experimentally validated by Hu
etal. [30]. Zhao etal. [31] proposed a nonlinear 2-DOF GPEH consisting of a cut-out cantilever and several magnets. Their experiments
showed that the cut-in wind speed was largely decreased owing to the introduction of nonlinearity. Yang et al. [32] developed a
magnetically coupled dual-beam GPEH and experimentally observed that the cut-in wind speed can be reduced up to 41.9%. They [33]
furtherly conducted a stochastic analysis on a galloping energy harvesting since the wind speed is random on a buoy platform.

In the aspect of interface circuit design, various interface circuits, such as AC, AC/DC, synchronized charge extraction (SCE), switch
harvesting on inductor (SSHI) circuits, are employed in GEPH. Abdelmoula et al. [34] studied the effect of electrical impedance on the
performance of galloping-based energy harvester. Tan et al. [35] studied the optimal performance of the conventional GPEH with a
pure resistance based on the analytical solution. Zhao et al. [36] studied the performance of a GPEH with a SSHI power conditioning
circuit. It was found that with a weak-coupling harvester operating at a wind speed of 7 m/s, the SSHI could harvest up to 143% more
wind power than the standard circuit. Then, Zhao et al. [37] derived the analytical solutions of a conventional GPEH with standard
rectified AC/DC, SCE, and SSHI circuits. A comprehensive comparison of these four electrical interfacing circuits in the conventional
GPEH was conducted by Zhao et al. [38], and the advantages and disadvantages of these four circuits were discussed. Recently, Wang
et al. [39] studied the performance of a tapered beam based GPEH with four direct-current circuits by using finite element methods,
Simulink simulations, and wind tunnel experiments.

It is important to note that in the aforementioned investigations, usually, the structure design and circuit design were focused
separately. In the structure design studies [13-33], the interface circuit is most likely to be a pure resistance. In the interface circuit
design studies [34-39], the structure is usually a classical piezoelectric cantilever beam with a common bluff body. As a result,
although a lot of novel structures and advanced circuits have been developed separately in the past few years, the performance of a
novel GPEH with advanced structure and circuit design is still an open question to be explored. A similar phenomenon can be found in
the research of vibration energy harvesting [40-41]. Two important methods have been applied in vibration energy harvesting to
overcome this issue and build a bridge between the structural and circuitry aspects. The first one is the equivalent circuit method [40],
which uses equivalent electrical elements to represent the mechanical components so that the entire electromechanical system is
represented and analyzed in the same electrical domain. As a result, the dynamic responses of novel piezoelectric structures with
advanced interface circuits can be simulated and studied by using circuit simulation and analysis methods. The second one is the
impedance matching method [41]. The system impedances can be categorized into two groups: mechanical (or source) impedance and
electrical (or load) impedance. Maximum power is obtained when these two impedances satisfy the impedance matching condition.
The impedance matching method has been widely used in vibration energy harvesting studies since it makes the power analysis more
convenient and efficient than conventional analytical methods. Based on these two methods, the analytical study and numerical
simulation of novel vibration energy harvesters with advanced interfaces can be performed [42-45]. For this reason, it is quite
promising to leverage these useful methods into galloping energy harvesting to solve similar problems.

Recently, the equivalent circuit method is introduced by Tang et al. [46] for numerical studies of galloping energy harvester. They
used the equivalent circuit method to simulate the dynamic responses of the linear GPEH with various interface circuits, such as SCE
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circuit and SSHI circuits. In these studies [37-38,46], the numerical results predicted by the equivalent circuit method agreed very well
with the analytical solutions and experimental results. However, the analytical solutions in their works were derived from the gov-
erning electromechanically coupled equations by using the harmonic balance method, and the equivalent circuit was used for nu-
merical simulation. In addition, in the studies, each type of the interface circuits was treated separately. As a result, though the results
for various interface circuits shared similarities along with differences, a deeper understanding of these similarities and differences is
difficult.

This paper is motivated to make several new contributions to the analytical modeling and analysis of GPEHs. The first and the most
important contribution is that a general model is developed to unify GPEHs connected with various types of interface circuits. The
unified model is based on the power expression for a linear GPEH connected with a generic load impedance representing the effect of
the interface circuit. As a result, the model provides insights into the similarities in the system behavior of GPEHs connected with
different interface circuits. On the other hand, for a specific type of interface circuit, the load impedance assumes a particular form, i.e.,
equivalent impedance. This leads to differences in their associated system behavior. The concept of equivalent impedance of interface
circuits has been successfully applied by Liao and Liang [43] to obtain a unified model of vibration-based PEHs (VPEH) that offers
excellent insights on their system behaviors. However, it has not been attempted on GPEHs, which have different underlying physics
from that of VPEHSs. It will be shown that the approach to obtain the unified model of GPEHs is similar (both use the equivalent
impedance concept) but also different from that for VPEHs to adapt to the unique physics. The second contribution is that we propose a
new equivalent circuit that models the external aerodynamic excitation through a negative resistive element. The circuit is self-excited
without an explicit voltage or current source, as in the case of VPEHSs. As a result, the conventional impedance matching method is not
suitable. Applying circuit laws to the equivalent circuit with a general electrical (load) impedance yields the analytical expression of
the harvested power, which is the foundation of the unified model. Though the concept of equivalent circuit is not new and it has been
applied to GPEHs in the literature (e.g., [36-38,46]), the idea of modeling the aerodynamic interaction and excitation through a
negative-resistance element and consequently representing the system as a self-excited circuit is novel. This new equivalent circuit
allows for the derivation of the power expression of the unified model conveniently. Note that the approach of using negative resis-
tance to achieve self-excitation was physically implemented by Lan et al. [47] on nonlinear vibration-based PEHs, resulting in high-
energy responses triggered by voltage impulse perturbations. Here, we use an equivalent negative resistance to theoretically model the
intrinsic, self-excitation physics of galloping-based PEHs. The third important contribution of the paper is the analytical expression of a
GPEH’s power limit (the maximum possible harvested power through the tuning of the interface circuit regardless of the type of the
interface circuit) along with the minimum required electromechanical coupling to reach the power limit. It is important to note that
while the conventional impedance matching method has been successfully used [43,44] to obtain the power limit of VPEHSs, it cannot
be applied to GPEHs here. In a conventional impedance matching configuration, there is a fixed voltage or current source, e.g.,
representing the vibration excitation in the case of VPEHs, and the load impedance is tuned to match the source impedance. However,
since the excitation physics are represented by resistive elements for GPEHs, there is not an equivalent voltage or current source.
Instead, we will apply circuit laws to determine the harvested power in general, and then obtain the power limit along its conditions.
The final important contribution is that many of the relationships and discussions are illustrated graphically by impedance plots,
facilitating the understanding of important concepts visually.

It is important to point out that the main aim of this paper is to present a general methodology for modeling and analyzing GPEHs,
which elucidates the underlying coupled dynamics of the system. While some of the results are not new, the proposed method offers a
new and unified view of the results that have scattered in the literature. In fact, the agreement between the results in this paper and
those previously obtained and validated by other researchers [37] serves as a validation of the proposed method and model. Note that
since the methodology is general, its application is not limited to only those selected interface circuits in Section 4. It can be extended to
other interface circuits as well.

The main contents of this paper are organized as follows: Section 2 describes the system modeling and new equivalent circuit of
GPEHs. Section 3 presents the detailed derivation of the unified model of GPEH. Section 4 uses the unified model to analytically study
the power performance of GPEHs with different interface circuits, and also presents a comprehensive comparison. Finally, the main
conclusions are summarized in Section 5.
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Fig. 1. Configuration of a typical GPEH system.
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2. System modeling and equivalent circuit
2.1. System modeling

A typical GPEH, as shown in Fig. 1, consists of a piezoelectric cantilever beam with a bluff body mounted at its free end. The effect
of wind flow on the mechanical structure can be represented by an aerodynamic force. When the wind speed increases to a certain
level, the aerodynamic force is large enough to cause the mechanical system to lose its stability and attain a large structural oscillation,
i.e., galloping motion. When galloping takes place, the piezoelectric transducer experiences large deformation and generates an
electric output voltage. Hence, the wind energy is harvested and transformed into electrical energy.

Based on the assumption of linear electromechanical coupling and elasticity behaviours, a lumped SDOF GPEH model commonly
used in the literature [18-21,48] is governed by the following electromechanically-coupled equations:

{ M3(t) + Cx(t) + Kx() — 0v, (1) = F, O
9)5([) + Cp‘}p(t) + q(t) =0 ’

where M, C, and K, are the effective mass, damping, and stiffness of the SDOF GPEH, respectively. The effective damping can be
expressed as C = 2{w,M, where { is the damping ratio and w, is the natural frequency; 0 is the electromechanical coupling coefficient;
Cp is the clamped capacitance of the piezoelectric transducer; x is the displacement relative to the base; v, is the voltage across the
piezoelectric element (also the external energy harvesting interface circuit); q is the electric charge; and F, is the vertical component of
the aerodynamic force acting on the bluff body.

To represent the aerodynamic force, the quasi-steady assumption is widely used in galloping energy harvesting. In the quasi-steady
assumption [48], the motion of the bluff body is assumed to be very slow compared to the motion of wind. Under this assumption, the
coefficients of aerodynamic force stay constant for a given angle of attack. According to Barrero-Gil [8], the aerodynamic force F, can

be modelled as
. -\ 3
X X
Sla — 853 <E>

where L and D are the crossflow length and width of the bluff body, respectively. p and U are the air density and wind speed,
respectively. And s; and s3 are the empirical linear and cubic coefficients of the transverse galloping force, which are dependent on the
cross-section geometry of the prismatic structure. Submitting Eq. (2) into Eq. (1), the governing equations of a SDOF GPEH are
rewritten as

1
Fu=5pLDU’ : @

1 :
Mi+ Ci + Kx—va:EpULD[s]X—%()é)3} ®

0x(t) + Cyv (1) +4(1) =0

2.2. Equivalent circuit

This paper aims to develop a unified model to analyze the power characteristics of galloping PEHs interfaced with various energy
harvesting circuits, and provide perspectives on the system behavior in a systematic matter. For this purpose, the equivalent circuit
representation has been shown to be an effective approach [46]. The coupled-field physics of the system can be entirely represented in
the electrical domain, where the effect and dynamics of energy harvesting interface circuits can be analyzed conveniently in one
domain. To derive the equivalent circuit, the aerodynamic force expression in Eq. (3) needs to be rewritten in a “linear” form. The
harmonic-balance linearization method, which has been successfully used in the impedance matching analysis of a monostable
piezoelectric energy harvester [42], can be applied here for this purpose. In the harmonic balance method, the solution of Eq. (3) is
assumed to be

{ x = asin(wt) + beos(wt) 7 @

X = awcos(wt) — bwosin(wt)

where o is the vibration frequency of the system, and a and b are the structural response constants. Submitting Eq. (4) into the cubic
term of the first part of Eq. (3) and neglecting high order harmonics, we have

# = [awcos(wt) — bosin(wt) *
~ o Ea3cos(wt) + éabzcos(a)t) — éazbsin((ut) — §b3sin(a)t)
4 4 4 4 ) ®

3
= Z#w%&

where r is the amplitude of the structural response, i.e.,
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[E R 6)

Substituting expression (5) into Eq. (2) yields the equivalent aerodynamic force

1 3rwss )\ .
F,= EpLDU(sl - )x, )
which can then be substituted into the governing equation (3) to yield the approximately equivalent equations:
. 1 3rw%s;\ 1.
MX(t) + {C - EpLDU(sl T ) }x(t) + Kx(1) — 6v,(t) =0 @
0x(t) + Cyv,(t) +4(1) =0
To derive the voltage relationship of the equivalent circuit, rewrite the first equation of (8) as
M d 1 1 3r2w%s3 K
= - 0% —|C—=pLDU| s, — 2) |- 6k = [1—ox =0.
Fdi 0x(1)] +€2 [C 4 U(sl A ) } [ — 0x(1)] —l—@2 /[ 0x(1))dt +v,(t) =0 ()]
Define the equivalent current
i = — 0X(1) 10)
and rewrite Eq. (9) as
Mdi,, C. pLDUs;, 3pLDs;e®. K .
& m topla — g g ety [ legdt () =0. an
This can be rewritten further as an equivalent voltage relationship in a closed-loop circuit
di, . . . ioqdt
L4 R+ Riteg + Rafig + fch +,(1) =0, 12)

where the first five terms on the left represent the voltage drops over an equivalent inductor, three resistors, and a capacitor,
respectively. The last term, v, is the voltage across the external energy harvesting circuit. By comparing Eqs. (11) and (12), the
equivalent electrical elements are defined as

M C pLDUs, o 3pLDs;rw* &

R,=— R = R: C, == 13
7k R 13)

L: =5 3 s )
0 UG K

where L, R;, C; represent the mass, damping, and stiffness of the original structure, and R; and R3 represent the effect of aerodynamic
force. In addition to the voltage relationships (12), the current relationship of the equivalent circuit can be obtained by rewriting the
second equation of (1) as

iw/(t) = Cp‘}p(t) +ip(t) (14)

where i, is the electrical current flowing into the external energy harvesting circuit. Combining relationships (12) and (14) yields the
equivalent circuit shown in Fig. 2, where the equivalent resistances R; and Rs representing the effect of the aerodynamic force. Note it
is a self-excited circuit with the negative resistance R; serving as an internal energy source or excitation to the circuit, and the positive
resistance R3 functioning as a variable, nonlinear resistance limiting the electrical current. Physically, the positive R represents the
intrinsic mechanical damping of the piezo beam, the negative R; provides the excitation and power to induce and maintain the

Ly Ly
R‘v C‘Y ieq(t)
—

=
i)

R3 R3

e [

' |

i
)

i :

! )

R, V(1) l i — 1 _) R,

: Cp Zeir : Zeled
)

i :

' )

I

Fig. 2. Equivalent circuit diagram of a galloping piezoelectric energy harvester shunted to a general interface circuit.
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galloping oscillations, and the positive R3 represents an additional aerodynamic damping that restricts the structural response of the
system, i.e., it increases with the structural response as shown in Eq. (13).

3. A unified model of galloping PEHs

With the equivalent circuit developed in Section 2.2, the power behavior of the system can be analyzed. First, denote the electrical
impedance of the system in a general form as

Zetee = Retec + jXetec (15)

where R, and X, are the resistance and reactance components, respectively. The electrical impedance Z, represents the effect of
both internal piezoelectric capacitance and external energy harvesting circuit, as shown by the shaded area in Fig. 2. It takes different
forms for different energy harvesting interface circuits [35-37]. The general form used here is intended to represent all interface
circuits for which an equivalent electrical impedance can be obtained. The equivalent impedance Z. (and its resistive and reactive
components R, Xelec) depends on the actual circuit load resistance (denoted as R for the rest of the paper). In other words, when the
load resistance R is tuned, R and X, change. The exact relation forms between these quantities will be discussed in detail in Section
4, where specific energy harvesting interface circuits are analyzed. To perform power analysis of the system, note that its equivalent
circuit in Fig. 2 is self-excited without an explicit source. Therefore, the voltage drop of the entire closed-loop circuit must equal zero.
Based on this relationship and the Kirchhoff’s Voltage Law (KVL), we can have the following voltage equation in the frequency domain:

1
JjoL, + R, + R, + Rs +ja)_C + Zeee (jo) | g (jwr) = 0. (16)

The terms inside the brackets as a whole must zero because the equivalent current i,q cannot be zero when galloping takes place,
resulting in the following relationship;

wlL; —

+ Xetee =0

1
oC, , a7

Ry +Ri +R3 +Rejee =0
for the imaginary and real parts, respectively. Substituting the equivalent circuit element quantities in Eq. (13) into the above
equations yields
@M — K + 060" Xoee =0
C pLDUs, 3pLDs;r*w* (18)

— — + + Reee =0
¢ 2& 8UG” !

The top part of Eq. (18) determines the vibration frequency w of the system due to galloping. It can be seen that the actual galloping
frequency depends on the original mechanical natural frequency of the GPEH, electromechanical coupling, and circuit tuning (through
Xelec)- The second part of Eq. (18) determines the structural response amplitude r, given the energy harvesting circuit and load
characteristics, i.e., Rejec and Xejec.

The harvested power of the GPEH, i.e., dissipated in the external energy harvesting circuit, can be calculated by

P =i Racc = | = OXRatee = O Retec- (19)
Interestingly, the product w?r can be directly determined as a whole from the second part of Eq. (18) as

o — 4pLDU%s; — 8UC — 8UR4..0"

20
3pLDs; (20)
Substituting this result into Eq. (19) yields the harvested power expression for a GPEH in general:
2
P= 4pLDU?s; — Reujec — 8UGR? 21
3pLDs, [(4pLDUs; — 8UC)Rec — 8UGRS,. ], (21)

which shows that the harvested power depends on only the resistance component R, of the electrical impedance, not the reactance
component Xg.. The direct effect of X, is on the galloping frequency of the system, as shown in the first equation of (18). It is
interesting to note that, out of the three original mechanical parameters M, C, and K, only the damping term C is explicitly involved in
the power expression Eq. (21). Therefore,

The most important characteristic of an energy harvester is the maximum possible power that can be harvested. To determine it, Eq.
(21) can be rewritten by completing the square for R, as

LUDs, —2C\* LUDs, —2C\*
sug* [(Rmp UDs, c) +<p UDs, c) ] 22

~ 3s:pLD 460 46°

It can be seen from the above expression that the power reaches its maximum when the resistive component of the electrical
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(23)

(24

This optimal power represents the maximum possible power that can be harvested by the galloping PEH for a given wind speed
through the tuning of the circuity, i.e., the power limit. Its expression (24) can be simplified further and defined as the power limit of the

system as

U(pLUDs, — 2C)*

P im —
! 6s3pLD

(25)

Equation (25) shows that the power limit of GPEHs is not inversely proportional to the mechanical damping ratio as for vibration-
based PEHs [43], but through a more complicated second-order relationship. It is important to emphasize that this power limit can be
reached only when the condition (23) on the electrical impedance is satisfied. However, physical circuits impose constraints on the
attainable range of R, through the tuning of circuit load resistance R. The electromechanical coupling of the system has to be equal or
greater than a critical value, i.e., critical coupling, to make it possible to satisfy the condition. This is graphically illustrated in Fig. 3,

T T T T
(a) Weakly coupled
o P Piim OPIOR =0
= n max P2
g - :
1
1
At% range o ' !
< > ()Relec/{)R =0 :
1 1 | : 1
max t
Relec R::)ec
I T T
(b) Critically coupled
P =P
© max ~Clim 9P/oR =0
= | - elec
Y »
B Wble Relec range {.)Relec/")R =0
</ —>
| | |
max _ opt
Relec ~ Delec
T T T T
(c) Strongly coupled
L P_ =P OPIOR_ =0
[0) max lim elec
g L
o i
1
- , . |
f Attainable R, R IR o JOR = 0
| : | 1 1
opt max
Relec Re|ec Relec

Fig. 3. Harvested power vs. resistive component R, of electrical impedance Z,,. at various coupling level. (a) Weakly coupled; (b) critically

opt
elec”

coupled; (c) strongly coupled. R

: optimal Ry for power limit; R};%X: maximum attainable R through circuit tuning.
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where the overall trend of the harvested power in Eq. (22) against R, is plotted. Through the tuning of load resistance R, only a finite
range of R, i.e., [0 R[}%X], can be attained due to physical constraints. Weakly coupled systems, e.g., Fig. 3(a), have a small coupling
coefficient 6. As a result, the optimal R for power limit, i.e., RZ’; as indicated by the vertical blue dashed line, is large as given by Eq.
(23) and falls outside the attainable R, range, making it not possible to reach the power limit Py, through tuning. As a result, the

. . max o : ] L opt
achievable maximum power Ppqy occurs at Rj& but is lower than Pj;,,. As the coupling increases, Ry,

decreases. Graphically, the blue
dashed line moves to the left. The instant R. = R™%* corresponds to a critically coupled situation as illustrated in Fig. 3(b) and Py =
Pjim. The associated coupling is the minimum coupling required to make it possible for the system power to reach Py, through circuit
(or load resistance) tuning, which is termed as the critical coupling. Further increase of the coupling beyond this critical coupling results
in a strongly coupled situation as shown in Fig. 3(c). In this case, R%, is small due to a large coupling coefficient 6 (see Eq. (23)), and it
is able to fall into the attainable R, now. As a result, it is possible for the maximum power Py, to reach Py, through the circuit or load
resistance tuning. Note though that the maximum power occurs at R%., which is different from (smaller than)R%%. As an additional
note, the attainable R, range depends on the type of energy harvesting interface circuit. Therefore, the critical coupling requirement
is different for different interface circuits as well. To determine the critical coupling, note that graphically from Fig. 3(b), the system is

of critical coupling when the maximum attainable R is equal to the optimal R, for power limit given by Eq. (23):

Rmax — Ropt (26)

elec elec®

This will be used as the governing relationship to find the critical coupling for various energy harvesting interface circuits in Section
4.2, where the power characteristics of galloping PEHs of various interface circuits are discussed and compared.

A mathematical perspective on the relationship between the maximum power and power limit, along with the effect of coupling,
can be obtained by differentiating the general power expression (22) with respect to the circuit load resistance R and setting it to zero:

0P 0P OR.. 16U¢* LUDs; —2C\ OR.pee
- o (e LB =2C) Hoe @7)

OR~ OR.. OR  3s3pLD 46 OR

Note that the chain rule has been used in the above equation since the power expression given in Eq. (21) is not explicitly in terms of
R, but the electrical resistance R, instead. Equation (27) gives the condition on local (and possibly global) maximum or minimum of
the power. In this case, there are two mathematical solutions:
pLUDs, —2C OR 1ec

=0or

Re ec T
’ 467 R

=0 (28)
Physically, the first solution corresponds to the situation that the system is tuned toR(,. to reach the power limit as given by Eq.
(22), i.e., OP/0Rgjec = 0; while the second solution corresponds to the situation that the system is tuned to the maximum attainable R,
denoted as R}, i..e, 0R¢ec/0R = 0. Note that since the power P is plotted versus Re in Fig. 3, the location of dP/0Re.. = 0, i.e., the
power limit location, is the zero-slope location on the power curve. On the other hand, the location of dR./dR = 0 is at the right end of
the attainable range of R,je, where R reaches its maximum through the tuning of circuit load resistance R. Fig. 3(c) shows that, if the
coupling is greater than the critical coupling, i.e., strongly coupled, the first solution in Eq. (28), i.e., 0P/0R = 0, is possible and
power can reach the global maximum power Py, at Rgﬁfc; while the power at Rj}%, corresponding to the second solution dRejec/dR = 0, is
a local minimum. In the case of weak coupling shown in Fig. 3(a), the first solution in Eq. (28) is not achievable, and the second
solution is the only viable one. The circuit load resistance R is tuned to maximize R, and the maximum power occurs at Rj}>*. In the
case of critical coupling shown in Fig. 3(b), both solutions in Eq. (28) exist and occur at the same circuit load resistance R. Additional
discussions on the relationship between P, R, and R, along with the significance of the two zero-partial derivative solutions in Eq.

(28) will be provided in Section 4.2.1, where the power P is directly plotted against the circuit load resistance R in the case of a purely
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Fig. 4. Different energy harvesting interface circuits: (a) AC, (b) SEH, (c) SCE, (d) S-SSHI, (e) P-SSHI.
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resistive energy harvesting interface circuit.

It is important to point out that we did not assume the exact type of energy harvesting interface circuit in the derivation of the
equivalent circuit and the power analysis after it. In other words, the results are general and can be applied to any type of energy
harvesting interface circuits as long as it can be accurately represented by an electrical impedance expression as in Eq. (15). This is
possible for any linear circuits and also few representative nonlinear rectified circuits with known equivalent electrical impedance
representations. Hence, the equivalent circuit and the power expressions obtained in this Section provide a framework and model that
unifies galloping PEHs of different energy harvesting interface circuits based on the equivalent electrical impedance concept. It serves
as a systematic approach for analysis and comparison. In the next section, power behavior of GPEHs of few typical circuit interfaces are
discussed, such as resistive (AC), standard AC/DC (SEH), synchronized charge extraction (SCE), and synchronized switch harvesting on
inductor (SSHI). As they are governed by the same unified model, they share some common characteristics. On the other hand, the
difference in the circuit configuration also leads to unique characteristics in their behavior. All of these will be discussed in detail in the
next section.

4. Power characteristics of a conventional GPEH with different interface circuits
4.1. Different interface circuits and numerical simulation method

Fig. 4 shows five representative circuits widely used in galloping energy harvesting, including the AC, SEH, SCE, and S-SSHI/P-SSHI
circuits. Notably, the analytical solutions of a conventional GPEH with the AC, SHE, and SCE interface circuits have been derived by
Zhao et al. [37] by directly manipulating system governing equations and treating the circuits individually. The drawback of the
method is that it required tediously long derivation for each circuit, and the solutions are separately given which failed to highlight
important connections between these circuits. To this end, the unified model is employed in analyze the performance of this con-
ventional GPEH with these five circuits. The parameters used in this paper are the same as the experimental results in Ref. [24], as
shown in Table 1. In the following section, the proposed unified model is employed to obtain the analytical solutions. Note that the
solutions for the AC, AC/DC and SCE interface circuits are consistent with those obtained by Zhao et al. [37]; while the solutions for the
SSHI circuits are newly presented for the first time.

4.2. Analytical solutions of various interface circuits

4.2.1. Resistive circuit (AC)
The electrical impedance of a PEH of an AC interface circuit has been determined [43] as
R . wC,R*

_ . (29)
I+ @GR 11 (@GR)

Zjee = Rijee +iXee =
By submitting Eq. (29) into Egs. (18) and (19) of the unified model, the analytical solution of GPEH with AC interface is obtained.
The resistance component of the electrical impedance (Eq. (29)) is given as

R

R =—o———
1+ (wC,R)

elec

(30)

which changes between zero and a maximum as the electrical load is tuned. As discussed in Section 3, this component directly affects
the harvested power, and it is important to determine its maximum and associated conditions. Mathematically, this can be done by
differentiation of Eq. (30). However, the variables w and R are dependent because the vibration frequency w depends on the electrical
load R as shown in Eq. (18). In other words, @ changes as the electrical load R changes. However, this change is usually small, within a
narrow range between the short-circuit and open-circuit natural frequencies of the system. As a result, @ can be assumed to be almost
constant with respect to R. Under this assumption, setting the first derivative of Eq. (30) to zero yields the optimal electrical load
resistance that maximizes Rejec:

Ropr = — (€19

with the maximum

Table 1

Parameters of galloping piezoelectric energy harvester.
Mechanical/Electrical parameters Aerodynamic parameters
Effective mass m; (g) 113.4 Air Density, p (kg/m>) 1.24
Effective stiffness k; (N/m) 58.02 Bluff body height, L (m) 0.1
Damping ratio {; 0.003 Cross flow dimension, D (m) 0.05
Capacitance C, (nF) 187 Linear aerodynamic coefficient, s; 2.5

Cubic aerodynamic coefficient, s3 130
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1
AC _
( elcc) max 2wcp

(32)

Fig. 5 illustrates graphically how the power and impedance components change as the load resistance increases. The electrome-
chanical coupling has a strong impact on the behavior as shown by the power curves in Fig. 5(a,c,e), where k? is the electromechanical
coupling coefficient of the system defined by k? = 62/ (KCp). In the case of weak coupling, e.g., k? = 0.004, the power initially increases
with the load resistance, and then decreases once the load resistance becomes too large. Note that the maximum power is still below the
power limit as denoted by the horizontal dashed line in purple, whose value is given by Eq. (25). In the case of critical coupling, e.g., k?
= 0.0061, the power curve is similar to that for weak coupling. However, the power is able to just reach the power limit at one location
(with one particular load resistance). If the coupling increases further, e.g., k? = 0.008, the system becomes strongly coupled, and the
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Fig. 5. Power and impedance plots of GPEH with AC circuit at various levels of electromechanical coupling: (a-b) weakly coupled; (c-d) critically
coupled; (e-f) strongly coupled.
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power reaches the power limit at two load resistances. Note that regardless of the value of coupling and load resistance, the overall
maximum power is always less or equal to the power limit. More insights into the relationship between power and load resistance can
be attained through the method of impedance plot, which presents the relationship between the (mechanical) source and (electrical)
tuning impedances graphically [43,44]. For instance, in Fig. 5(b), as the load resistance increases, the corresponding impedance point
(refer to Eq. (29)) moves along the tuning impedance curve (the arc shape) in the clockwise direction from the origin. The vertical
dashed line (termed matched impedance or power limit line) represents the required optimal R to reach the power limit. The distance
between the tuning impedance point and the power limit line can be used as an indicator of the power level qualitatively: a shorter
distance indicates a higher power [49]. When the tuning impedance curve and power limit line intersect, the power limit is reached.
When the coupling is weak, e.g., k> = 0.004, the matched impedance curve (in red) is away from the tuning impedance curve.
Therefore, the power limit is not reached and the maximum power occurs at R}%. To relate to the discussions in Section 3 (in
particular, Egs. (27-28)), this maximum power location in the case of weak coupling is also where dR../dR = O, i.e., the second
solution of Eq. (27). The first solution is not possible due to low electromechanical coupling. When the coupling is strong, e.g., k? =
0.008, Fig. 5(f) shows the tuning and matched impedance curves are able to intersect at two locations, where the first solution of Eq.
(27) exists, i.e., 0P/0R¢c = 0. This leads to two power limit peaks on the power curve as in Fig. 5(e). In addition, the location of dR¢je./
OR = 0 is a local minimum on the curve. The state of critical coupling occurs when the tuning impedance curve and power limit line are
just “touching” each other as shown in Fig. 5(d) for k% = 0.0061. The associated power curve in Fig. 5(c) has just one power limit peak,
where d0P/0R¢jec = OR¢lec/OR = 0.

The critical coupling can be determined by noting that at this state, the maximum Ry is equal to the optimal R, as given by Eq.
(26) and illustrated in Fig. 3(b) and 5(d). In the case of a resistive (AC) interface circuit, substituting expressions (23) and (32) into Eq.
(26) yields

1 pLUDs, —2C

33
20C, 46> ’ )
from which we have
1
&> = wC, (EpLUDs] - C) (34

It is more common to use the coupling coefficient k2 instead of the coupling constant 6 to represent the overall electromechanical
coupling of a system, which is defined as

02
2 _
= (35)

Combining expression (34) and (35) yields the critical coupling coefficient for GPEHs of a resistive AC interface circuit:

@
(k) 1c = 5 (PLUDs1 = 2C) (36)

4.2.2. Standard AC-DC circuit (SEH)
The electrical impedance of a PEH of a standard AC-DC interface circuit has been determined [43] as

2R R
SEH .
elec = —J . 37)
“ (0GR +7/2)° 0GR+ /2
The resistance component of the electrical impedance is given as
: 2R
R =2 (38)
(s3+wC,R)
By differentiating expression (38) with respect to R, the load resistance to maximizes (38) can be found to be
sen _ T
v = 2pC, (39)
Substituting Eq. (39) into Eq. (38) yields the maximum attainable R, through circuit tuning:
1
SEH _
( elec )max - TI(I)C,,. (40)
To find the critical coupling in this case, substituting (23) and (40) into Eq. (26), we have
1 pLUDs, —2C 1)

rwC, 40*

from which the critical coupling coefficient can be found to be
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# o
(klz‘)SEH = KC, 41K (pLUDs, —2C) (42)

Fig. 6 shows the power and impedance plots of the GPEH with a SEH circuit, which are similar to those for the AC interface circuit.
For weak coupling, there is no intersection in the impedance plot, and there is only one power peak (below the power limit) on the
power curve. In the case of critical coupling, there is one intersection location in the impedance plot. The power curve still has just one
power peak but it is at the power limit now. In the case of strong coupling, there are two intersection points in the impedance plot.
Correspondingly, there are two power limit peaks on the power curve. Note that given the same configuration of the GPEH, the SEH
circuit requires a higher critical coupling coefficient than that for the AC circuit, in this case, 0.0096 vs. 0.0061. Their general rela-
tionship can be seen by comparing Egs. (36) and (42). This will be discussed further in Section 4.3.

4.2.3. Synchronized charge extraction (SCE)
The electrical impedance of a PEH of an SCE interface circuit has been determined [50] as

‘CE ‘CE : 1 4
zit = R+t = o (2-): 43)
14

The resistance component of the electrical impedance is given as

4 1
scE 2 44
elec T pr, ( )

which is a constant. To find the critical coupling in this case, substitute (23) and (44) into Eq. (26) and we have
4 pLUDs, —2C

45
zwC, 46 (45)
from which the critical coupling coefficient can be found to be
iR T
2 _ [ _ _
(k) gep = XC, =16 & (PLUDs; —2C) (46)

Fig. 7 shows the power and impedance plots of the GPEH with a SCE interface circuit. Since the electrical impedance is independent
of the load resistance R, the output power stays constant regardless of the load resistance. This special feature enables a stable output
power in the circumstance where resistance load changes a lot. However, it is noted in Fig. 7(b) that the tuning impedance Z,, is a
single point and intersection takes place only in the case of critical electromechanical coupling. As a result, when the coupling is larger
or lower than the critical coupling, the maximum power is lower than the power limit. In other words, the piezoelectric transducer
should be carefully designed to attain the critical coupling and power limit. However, it is also shown in Eq. (46) that the critical
coupling of the SCE circuit is proportional to the wind speed U. Thus, for a fixed eletromechanical coupling, the power limit can be
achieved at a certain wind speed, which means that the condition of SCE circuit to obtain power limit is quite oppressive.

4.2.4. P-SSHI, S-SSHI circuits
The electrical impedance of SSHI interface circuits is given [51] as
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Fig. 6. The power performance of GPEH with DC circuit: (a) effect of k* on the relation between load resistance and power, (b) impedance plot